myreaders

July 11, 2015

Position Of Sun on Celestial Sphere at Input Universal Time

   Position   Of   Sun   on   Celestial   Sphere   at   Input   Universal   Time

by  R C  Chakraborty,  July 11,  2015,  Pages  57 – 67.

(This   is   Sec. 3,   pp 57 – 67,   of   Orbital   Mechanics  –   Model   &   Simulation   Software  (OM-MSS),   Sec 1  to 10,  pp 1 – 402.)

Sun  is  a  star  at  the  center  of  our  Solar  System.   Although  stars  are  fixed  relative  to  each  other,  but  Sun moves   relative   to   stars.

Sun   follows   a   circular  path  on  the  celestial  sphere,  once  a  year.   This  path  is  known  as  the  ‘Ecliptic’, representing  the  plane  of  the  Earth’s  orbit.

The  Inclination   of   the  Earth’s  equator  to  the  Ecliptic  (or  earth’s  rotation  axis  to  a  perpendicular  on  ecliptic) is  called  Obliquity  of  the  ecliptic.

The  Obliquity  of  the  ecliptic  is  currently  23.4392794383  deg   with  respect  to  the  celestial  equator,  at standard  epoch  J2000 .

The   position   of   any   point   on   the  Celestial  Sphere   is   given  with  reference   to   the   equator  or  the  ecliptic.

The  Earth  moves  in  an  elliptical  orbit  around  the  Sun.   Therefore  the  distance  from  Earth  to  Sun  is  not same   at   all   points   on   the   orbit.

(a)   Find   Julian   day   of   interest   corresponding   to   the   input   Universal   Time;

(b)  Find  Corresponding  Ecliptic  coordinates  :   Mean  anomaly  of  the  Sun,  Mean  longitude  of  the  Sun, Ecliptic   longitude   of   the   Sun,

      Ecliptic  latitude  of  the  Sun  is  always  nearly  zero,   Distance  of  the  Sun  from  the  Earth  in  astronomical   units,   Obliquity   of   the   ecliptic

(c)   Find   Corresponding   Equatorial   coordinates   :    Right ascension,    Declination.

In  addition  to  these  Ecliptic  and  Equatorial  coordinates,   computed  many  other  parameters  related  to  Sun’s Position  on  Celestial  Sphere.

The   Position   of   Sun   on   Celestial   Sphere   is   represented   by   computing   following  parameters   :

 1.     Semi-major axis (SMA),                  2.    Mean movement per day (n sun),      3.     Mean distance (As),

 4.     Mean anomaly (m sun),                  5.     True anomaly (T sun),                         6.     Eccentric anomaly (E sun),

 7.     Right ascension (Alpha),                 8.     Declination (Delta),                               9.     Mean longitude (Lmean),

 10.   Ecliptic longitude (Lsun),                11.   Nodal elongation (U sun),                   12.   Argument of perigee (W sun),

 14.   Obliquity of ecliptic (Epcylone),     14.   Mean dist (d_sun),                               15.   Radial distance (Rs).

For   complete   post   (Page 57 – 67)     Move    on    to    Website    URL   :

http://myreaders.info/html/orbital_mechanics.html

Advertisements

Create a free website or blog at WordPress.com.